Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
BMJ Open Gastroenterol ; 9(1)2022 04.
Article in English | MEDLINE | ID: covidwho-1807372

ABSTRACT

BACKGROUND: Northern England has been experiencing a persistent rise in the number of primary liver cancers, largely driven by an increasing incidence of hepatocellular carcinoma (HCC) secondary to alcohol-related liver disease and non-alcoholic fatty liver disease. Here we review the effect of the COVID-19 pandemic on primary liver cancer services and patients in our region. OBJECTIVE: To assess the impact of the COVID-19 pandemic on patients with newly diagnosed liver cancer in our region. DESIGN: We prospectively audited our service for the first year of the pandemic (March 2020-February 2021), comparing mode of presentation, disease stage, treatments and outcomes to a retrospective observational consecutive cohort immediately prepandemic (March 2019-February 2020). RESULTS: We observed a marked decrease in HCC referrals compared with previous years, falling from 190 confirmed new cases to 120 (37%). Symptomatic became the the most common mode of presentation, with fewer tumours detected by surveillance or incidentally (% surveillance/incidental/symptomatic; 34/42/24 prepandemic vs 27/33/40 in the pandemic, p=0.013). HCC tumour size was larger in the pandemic year (60±4.6 mm vs 48±2.6 mm, p=0.017), with a higher incidence of spontaneous tumour haemorrhage. The number of new cases of intrahepatic cholangiocarcinoma (ICC) fell only slightly, with symptomatic presentation typical. Patients received treatment appropriate for their cancer stage, with waiting times shorter for patients with HCC and unchanged for patients with ICC. Survival was associated with stage both before and during the pandemic. 9% acquired COVID-19 infection. CONCLUSION: The pandemic-associated reduction in referred patients in our region was attributed to the disruption of routine healthcare. For those referred, treatments and survival were appropriate for their stage at presentation. Non-referred or missing patients are expected to present with more advanced disease, with poorer outcomes. While protective measures are necessary during the pandemic, we recommend routine healthcare services continue, with patients encouraged to engage.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Liver Neoplasms , COVID-19/epidemiology , Carcinoma, Hepatocellular/epidemiology , Humans , Liver Neoplasms/epidemiology , Pandemics , Retrospective Studies
2.
J Virol ; 96(6): e0205921, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1788916

ABSTRACT

The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious global pathogen prevalent in all types of poultry flocks. IBV is responsible for economic losses and welfare issues in domestic poultry, resulting in a significant risk to food security. IBV vaccines are currently generated by serial passage of virulent IBV field isolates through embryonated hens' eggs. The different patterns of genomic variation accumulated during this process means that the exact mechanism of attenuation is unknown and presents a risk of reversion to virulence. Additionally, the passaging process adapts the virus to replicate in chicken embryos, increasing embryo lethality. Vaccines produced in this manner are therefore unsuitable for in ovo application. We have developed a reverse genetics system, based on the pathogenic IBV strain M41, to identify genes which can be targeted for rational attenuation. During the development of this reverse genetics system, we identified four amino acids, located in nonstructural proteins (nsps) 10, 14, 15, and 16, which resulted in attenuation both in vivo and in ovo. Further investigation highlighted a role of amino acid changes, Pro85Leu in nsp 10 and Val393Leu in nsp 14, in the attenuated in vivo phenotype observed. This study provides evidence that mutations in nsps offer a promising mechanism for the development of rationally attenuated live vaccines against IBV, which have the potential for in ovo application. IMPORTANCE The Gammacoronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute, highly contagious, economically important disease of poultry. Vaccination is achieved using a mixture of live attenuated vaccines for young chicks and inactivated vaccines as boosters for laying hens. Live attenuated vaccines are generated through serial passage in embryonated hens' eggs, an empirical process which achieves attenuation but retains immunogenicity. However, these vaccines have a risk of reversion to virulence, and they are lethal to the embryo. In this study, we identified amino acids in the replicase gene which attenuated IBV strain M41, both in vivo and in ovo. Stability assays indicate that the attenuating amino acids are stable and unlikely to revert. The data in this study provide evidence that specific modifications in the replicase gene offer a promising direction for IBV live attenuated vaccine development, with the potential for in ovo application.


Subject(s)
Amino Acids , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Nonstructural Proteins , Viral Vaccines , Amino Acids/chemistry , Amino Acids/genetics , Animals , Chick Embryo , Chickens , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Female , Infectious bronchitis virus/genetics , Poultry Diseases/prevention & control , Poultry Diseases/virology , Vaccines, Attenuated/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Vaccines/genetics
3.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1782008

ABSTRACT

In the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology. Importantly, although all four strains replicated equally well in porcine cell lines in vitro and in the upper respiratory tract in vivo, PRCV strains causing more severe lung pathology were also able to replicate in ex vivo tracheal organ cultures as well as in vivo in the trachea and lung. The time course of infection of PRCV 135, which caused the most severe pulmonary pathology, was investigated. Virus was shed from the upper respiratory tract until day 10 post infection, with infection of the respiratory mucosa, as well as olfactory and sustentacular cells, providing an excellent model to study upper respiratory tract disease in addition to the commonly known lower respiratory tract disease from PRCV. Infected animals made antibody and T cell responses that cross reacted with the four PRCV strains and Transmissible Gastroenteritis Virus. The antibody response was reproduced in vitro in organ cultures. Comparison of mechanisms of infection and immune control in pigs infected with PRCVs of differing pathogenicity with human data from SARS-CoV-2 infection and from our in vitro organ cultures, will enable key events in coronavirus infection and disease pathogenesis to be identified.

5.
Pediatr Infect Dis J ; 40(2): e72-e76, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1207336

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), an entity in children initially characterized by milder case presentations and better prognoses as compared with adults. Recent reports, however, raise concern for a new hyperinflammatory entity in a subset of pediatric COVID-19 patients. METHODS: We report a fatal case of confirmed COVID-19 with hyperinflammatory features concerning for both multi-inflammatory syndrome in children (MIS-C) and primary COVID-19. RESULTS: This case highlights the ambiguity in distinguishing between these two entities in a subset of pediatric patients with COVID-19-related disease and the rapid decompensation these patients may experience. CONCLUSIONS: Appropriate clinical suspicion is necessary for both acute disease and MIS-C. SARS-CoV-2 serologic tests obtained early in the diagnostic process may help to narrow down the differential but does not distinguish between acute COVID-19 and MIS-C. Better understanding of the hyperinflammatory changes associated with MIS-C and acute COVID-19 in children will help delineate the roles for therapies, particularly if there is a hybrid phenotype occurring in adolescents.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Myocarditis/complications , Myocarditis/physiopathology , Adolescent , Black or African American , COVID-19/diagnosis , COVID-19/pathology , Female , Humans , Intensive Care Units , Myocarditis/diagnosis , Myocarditis/pathology , SARS-CoV-2/isolation & purification , Systemic Inflammatory Response Syndrome
6.
Nurs Adm Q ; 45(2): 102-108, 2021.
Article in English | MEDLINE | ID: covidwho-1165558

ABSTRACT

As hospitals across the world realized their surge capacity would not be enough to care for patients with coronavirus disease-2019 (COVID-19) infection, an urgent need to open field hospitals prevailed. In this article the authors describe the implementation process of opening a Boston field hospital including the development of a culture unique to this crisis and the local community needs. Through first-person accounts, readers will learn (1) about Boston Hope, (2) how leaders managed and collaborated, (3) how the close proximity of the care environment impacted decision-making and management style, and (4) the characteristics of leaders under pressure as observed by the team.


Subject(s)
COVID-19/epidemiology , Capacity Building/organization & administration , Hospital Design and Construction/methods , Mobile Health Units/organization & administration , Boston , Female , Humans , Leadership , Male , Mobile Health Units/statistics & numerical data , Pandemics , SARS-CoV-2 , Uncertainty
7.
Accredit Qual Assur ; 26(2): 103-105, 2021.
Article in English | MEDLINE | ID: covidwho-1155282

ABSTRACT

The 43rd meeting of the Reference Material Committee of ISO, ISO/REMCO, that was scheduled to take place in Milan, Italy, from 30 June to 3 July 2020 with Accredia, the Italian accreditation body and INRIM, the Italian Metrology Institute as the hosts, was cancelled due to the COVID-19 pandemic. This report shares the details of the important decision that was taken by the ISO Technical Management Board (TMB) in December 2020 to transform ISO/REMCO into an ISO technical committee, ISO/TC 334, Reference materials. The background that led to the decision is provided as well as the implications of the decision for the future of the development of guidance for the production and use of reference materials. The report also gives an update on the progress with the work program of the committee during the past year and the strategy for the future work of the committee.

8.
Nat Commun ; 12(1): 542, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-1044339

ABSTRACT

There is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Peptides/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Blocking/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , Cell Line , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Interaction Domains and Motifs , Protein Multimerization , Swine
9.
PLoS Biol ; 18(12): e3001016, 2020 12.
Article in English | MEDLINE | ID: covidwho-992640

ABSTRACT

SARS Coronavirus 2 (SARS-CoV-2) emerged in late 2019, leading to the Coronavirus Disease 2019 (COVID-19) pandemic that continues to cause significant global mortality in human populations. Given its sequence similarity to SARS-CoV, as well as related coronaviruses circulating in bats, SARS-CoV-2 is thought to have originated in Chiroptera species in China. However, whether the virus spread directly to humans or through an intermediate host is currently unclear, as is the potential for this virus to infect companion animals, livestock, and wildlife that could act as viral reservoirs. Using a combination of surrogate entry assays and live virus, we demonstrate that, in addition to human angiotensin-converting enzyme 2 (ACE2), the Spike glycoprotein of SARS-CoV-2 has a broad host tropism for mammalian ACE2 receptors, despite divergence in the amino acids at the Spike receptor binding site on these proteins. Of the 22 different hosts we investigated, ACE2 proteins from dog, cat, and cattle were the most permissive to SARS-CoV-2, while bat and bird ACE2 proteins were the least efficiently used receptors. The absence of a significant tropism for any of the 3 genetically distinct bat ACE2 proteins we examined indicates that SARS-CoV-2 receptor usage likely shifted during zoonotic transmission from bats into people, possibly in an intermediate reservoir. Comparison of SARS-CoV-2 receptor usage to the related coronaviruses SARS-CoV and RaTG13 identified distinct tropisms, with the 2 human viruses being more closely aligned. Finally, using bioinformatics, structural data, and targeted mutagenesis, we identified amino acid residues within the Spike-ACE2 interface, which may have played a pivotal role in the emergence of SARS-CoV-2 in humans. The apparently broad tropism of SARS-CoV-2 at the point of viral entry confirms the potential risk of infection to a wide range of companion animals, livestock, and wildlife.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism , Virus Attachment , Amino Acid Substitution , Animals , Binding Sites , Cats , Cattle , Dogs , Guinea Pigs , HEK293 Cells , Host-Pathogen Interactions , Humans , Rabbits , Rats , Viral Zoonoses/virology
10.
NPJ Vaccines ; 5(1): 69, 2020.
Article in English | MEDLINE | ID: covidwho-689622

ABSTRACT

Clinical development of the COVID-19 vaccine candidate ChAdOx1 nCoV-19, a replication-deficient simian adenoviral vector expressing the full-length SARS-CoV-2 spike (S) protein was initiated in April 2020 following non-human primate studies using a single immunisation. Here, we compared the immunogenicity of one or two doses of ChAdOx1 nCoV-19 in both mice and pigs. Whilst a single dose induced antigen-specific antibody and T cells responses, a booster immunisation enhanced antibody responses, particularly in pigs, with a significant increase in SARS-CoV-2 neutralising titres.

11.
J Gen Virol ; 101(10): 1103-1118, 2020 10.
Article in English | MEDLINE | ID: covidwho-688886

ABSTRACT

Coronavirus sub-genomic mRNA (sgmRNA) synthesis occurs via a process of discontinuous transcription involving complementary transcription regulatory sequences (TRSs), one (TRS-L) encompassing the leader sequence of the 5' untranslated region (UTR), and the other upstream of each structural and accessory gene (TRS-B). Several coronaviruses have an ORF located between the N gene and the 3'-UTR, an area previously thought to be non-coding in the Gammacoronavirus infectious bronchitis virus (IBV) due to a lack of a canonical TRS-B. Here, we identify a non-canonical TRS-B allowing for a novel sgmRNA relating to this ORF to be produced in several strains of IBV: Beaudette, CR88, H120, D1466, Italy-02 and QX. Interestingly, the potential protein produced by this ORF is prematurely truncated in the Beaudette strain. A single nucleotide deletion was made in the Beaudette strain allowing for the generation of a recombinant IBV (rIBV) that had the potential to express a full-length protein. Assessment of this rIBV in vitro demonstrated that restoration of the full-length potential protein had no effect on viral replication. Further assessment of the Beaudette-derived RNA identified a second non-canonically transcribed sgmRNA located within gene 2. Deep sequencing analysis of allantoic fluid from Beaudette-infected embryonated eggs confirmed the presence of both the newly identified non-canonically transcribed sgmRNAs and highlighted the potential for further yet unidentified sgmRNAs. This HiSeq data, alongside the confirmation of non-canonically transcribed sgmRNAs, indicates the potential of the coronavirus genome to encode a larger repertoire of genes than has currently been identified.


Subject(s)
Infectious bronchitis virus/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription, Genetic/genetics , 5' Untranslated Regions/genetics , Animals , Base Sequence , Cell Line , Chickens , Chlorocebus aethiops , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Open Reading Frames/genetics , Poultry Diseases/virology , Vero Cells , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL